Chapter - 3

3. The Consonant Clusters

A consonant cluster is defined as a group or sequence of consonants that appear together in a syllable without a vowel between them (instrasyllabic). (cf. eg, Jones 1976). For example, /sp/ and /ts/ in the word 'spots' or /spr/ in the word 'spring'.

3.1 The Consonant Clusters in English

So as to give a complete picture of initial (onset) and final (coda) clusters in English, the following sources have been compared : Heinz J. Giegerich (1992) who analyses consonant clusters in terms of generative phonology, Peter Roach (2002) whose analysis of possible phoneme combinations is based on more traditional structural approach, San Duanmu (2009) who supplements Giegerich's and Roach's descriptions of the phonotactic possibilities of English with the aspects of Optimality Theory and gives the reliable statistical data, and one internet source (http://www.btml) which offers the practical list of some consonant clusters in English.

The word, i.e. the syllable in English can begin with a vowel, with one, two or three consonants. No word in English begins with
more than three consonants (roach 2002:71), thus the maximum number of segments in the word-initial consonant cluster is three.

At the beginning of English words (syllables), in many cases, the first element is /s/ and the second consonant is approximant /I, r, w, j/ (cf. Roach 2002 : 73 ; Duanmu 2009 : 160).

3.1.1 Initial CC Clusters in English :

Starting with oral plosive /p/ as first member followed by /r, I, j, w, f, s / as second members.

Starting with oral plosive /b/ as first member followed by /r, I, j / as second members.

$$
\begin{array}{ll}
\text { br }- & \text { bra:s, bred } \\
\text { bl } & =\text { brass, bread } \\
\text { bl } & \text { bld, blpk } \\
\text { bj }- & \text { bju:ti }
\end{array}
$$

Starting with oral plosive /t/ as first member followed by / r, w, j / as second members.

tr -	trail, treid	$=$ trail, trade
tw -	twin, twais	$=$ twin, twice
tj -	tju:n, tju:tə	$=$ tune, tutor

Starting with oral plosive /d/ as first member followed by / r, j, w/ as second members.

$d r-$	dra:ft, drill	$=$	draft, dril
dj	dju:, dju:ti	$=$	due/dew, duty
$d w-$	dwel, dwindle	$=$	dwell, dwindle

Starting with oral plosive $/ \mathrm{k} /$ as first member followed by / r, I, w, j, n , $\mathrm{v} /$ as second members.

$\mathrm{kr}-$	kros, krai	$=$ cross, cry
$\mathrm{kl}-$	kleim, kla:s	$=$
claim, class		
$\mathrm{kw} \mathrm{-}$	kwæk	$=$ quack

kj -	kju:pid, kjvər	$=$	cupid, cure
kn -	kneset	$=$	Knesset
kv	kva:s (kvæs), kvet \int	$=\quad$ kvas, kvetch	

Starting with oral plosive /g/ as first member followed by / r, I, w/ as second members.

| gr - | gra:s, gr^nt | $=$ grass grant |
| :--- | :--- | :--- | :--- |
| gl | glæd, gla:s $=$ | glade, glass |
| gw - | gwen, gwendə | $=$ Gwen,Gwenda |

Starting with nasal plosive /n/ as first member followed by / $\mathrm{j}, \mathrm{j} /$ as second members.

nj -	nju:, nju:z	$=$ new, news
mj - mju:, mju:t	$=$ mew, mute	

Starting with fricative /f/ as first member followed by / I, r, j/ as second members.

fl -	flæt, flə:	$=$	flat, flaw
fr -	fref, fri:z	$=$	fresh, freez
fj	fju:, fjvəri	$=$	few, fury

Starting with fricative /v/ as first member followed by / $\mathrm{j} /$ as second member.

$$
\text { vj } \quad-\quad \text { vju:, vjetnæm }=\text { view, vietnam }
$$

Starting with fricative / $\theta /$ as first member followed by / r, w, j/as second members.

$\theta r-\theta r i:, ~ \theta r i l$	$=$	three, thrill	
$\theta w-$	$\theta w ə: t$	$=$	thwart
$\theta j-$	$\theta j u: l i:, ~ \theta j u: s i d i d i: z$		

Starting with fricative /s/ as first member followed by / $\mathrm{t}, \mathrm{p}, \mathrm{k}, \mathrm{l}, \mathrm{w}$, $\mathrm{n}, \mathrm{m}, \mathrm{t}, \mathrm{j}, \mathrm{r} /$ as second members.

st	-	step, stif	=	step, stiff
sp	-	spdt, spin	=	spot, spin
sk	-	skbf, sku:l	=	scoff,school
sl	-	sli:t, sli:p	=	sleet, sleep
SW	-	swet, swi:p	=	sweat, sweep
sn	-	sneil, snəu	=	snail, snow
sm	-	sma:t, smi θ	$=$	smart, smith
st	-	stəひv, sti:l	$=$	stove, steel
sj	-	sju:t	=	suit
sr	-	srin^gə	=	srinagar

Starting with fricative /z/ as first member followed by / I / as second member.

$$
\text { zl } \quad \text { zloti } \quad=\quad \text { zloty }
$$

Starting with fricative /h/ as first member followed by / j / as second member.

$$
\text { hj }=\text { hju:mid, hju:mən }=\text { humid, human }
$$

Starting with affricate :

The number of the initial three consonant clusters in English is quite limited, there are nine of them, all starting with / s/as first member followed by / pl, pr, pj, tr, tj, kl, kr, kw, kj / as second members.

spl -	splæf	$=$	splash
spli:n	$=$	spleen	
spr -	sprin	$=$	spring
sprain	$=$	sprain	
spj -	spjuəriəs	$=$	spurious
str -	strein	$=$	strein
straik	$=$	strike	
stj -	stju:pid	$=$	stupid
stju:drəv	$=$	studio	
skl -	sklərəusis	$=$	sclerosis

| skr - skri:n | $=$ screen |
| ---: | :--- | :--- |
| skri:m | $=$ scream |
| skw - skwd | $=$ skweər |
| skj - skjuə | $=$ skua |

In Duanmu's view, the initial /s/ can be excluded and onset clusters either form a complex sound (they are produced with different articulator, cf. Duanmu 2009; 43 - 44) or they are predictable by morphology as real or potential affixes.

The word (syllable) in English can end with a vowel, with one, two, three or four consonants (Roach 2002; 73). The maximum number of consonants in the final consonant cluster is four.

There are 55 final two-consonant clusters in English. They usually end with /s, z, t, d, o/ which represent separate morphs (Roach 2002 : 73); / s, z / are the sound forms of ending -(e)s, and /t, $\mathrm{d} /$ stand for the ending -(e)d.

3.1.2 Final CC Clusters in English

Starting with oral plosive / p / as first member followed by / $\theta, \mathrm{t}, \mathrm{s} /$ as second members.

$$
\begin{aligned}
& \text { pe - } \begin{array}{l}
\text { depe } \\
\text { pt }- \\
\text { stppt } \\
\text { wept }
\end{array}=\text { stopped } \\
&
\end{aligned}
$$

$$
\begin{array}{lll}
\text { ps }-\quad & \text { tæps } & \text { taps } \\
\text { kæps } & =\text { caps }
\end{array}
$$

Starting with oral plosive / b/as first member followed by /d, z / as second members.

bd	-	robd	=	robbed
		r^bd	=	rubbed
bz	-	k^bz	=	cubs

Starting with oral plosive / t/ as first member followed by /s,/ as second member.

$$
\begin{aligned}
\text { ts }-\quad & =\text { cuts } \\
\text { mæts } & =\text { mates }
\end{aligned}
$$

Starting with oral plosive /d/ as first member followed by /z/ as second members.

$$
\text { dz }-\quad \text { wodz }=\text { woods }
$$

Starting with oral plosive $/ \mathrm{k} /$ as first member followed by $/ \theta, \mathrm{t}, \mathrm{s} /$ as second members.

k θ	-	kөəəniən		$=$	chthonian
kt	-	w3:kt		$=$	worked
		tə:kt	$=$	talked	
ks	-	tə:ks	$=$	talks	
		w3:ks	$=$	works	

Starting with oral plosive $/ \mathrm{g} /$ as first member followed by $/ \mathrm{d}, \mathrm{z} /$ as second members.

$$
\begin{array}{lll}
\text { gd }- & \text { begd } & =\text { begged } \\
\text { gz }-\quad \text { bægz } & =\text { bags }
\end{array}
$$

Starting with nasal plosive $/ \mathrm{m} /$ as first member followed by $/ \mathrm{p}, \mathrm{f}, \mathrm{d}, \mathrm{z} /$ as second members.

| $\mathrm{mp}-$ | kæmp | $=$ camp |
| :--- | :--- | :--- | :--- |
| $\mathrm{mf}-$ | nimf | $=$ nymph |
| $\mathrm{md}-$ | dæmd | $=$ damed |
| $\mathrm{mz}-$ | bbmz | $=$ bombs |

Starting with nasal plosive / $\mathrm{n} /$ as first member followed by / $\boldsymbol{\mathrm { l }}, \mathrm{t}, \mathrm{d}, \mathrm{s}$, z / as second members

nə	-	tenə	=	tenor
nt	-	w^nt	=	want
nd	-	wond	=	wand
ns	-	tens	=	tense
$n z$	-	henz	=	hens

Starting with nasal plosive / n / as first member followed by /d, z, k/ as second members

nd $-\quad$ roŋd	$=$	wronged	
$\eta z-$	$\operatorname{si\eta z}$	$=$	sings
$\eta k-$	bæŋk	$=$ bank	

Starting with fricative / f / as first member followed by $/ \theta, \mathrm{t}, \mathrm{s} /$ as second members

f日 $-\quad$ fifө	$=$	fifth	
ft	left	$=$	left
$\mathrm{fs}-$	snıfs	$=$	snifs

Starting with fricative / v / as first member followed by /d, z / as second members

$$
\begin{array}{llll}
\text { vd }- & \text { seivd } & = & \text { saved } \\
v z & \text { knives } & = & \text { naivz }
\end{array}
$$

Starting with fricative / θ / as first member followed by /s/ as second member.

$$
\text { өs }- \text { mies }=\text { myths }
$$

Starting with fricative / ठ / as first member followed by /d, z/ as second members.

$$
\begin{array}{llll}
\text { ðd }- & \text { ri:ðd } & = & \text { wreathed } \\
\text { ðz }- & \text { bri:ðz } & = & \text { breathes }
\end{array}
$$

Starting with fricative / s/as first member followed by /p, $\mathrm{t}, \mathrm{k} /$ as second members.

sp -	wasp	$=$	wosp
st -	last	$=$	la:st
sk -	ask	$=$	a:sk

Starting with fricative / z / as first member followed by /d/ as second member.

$$
\text { zd } \quad \text { surprised }=\quad \text { səpraizd }
$$

Starting with approximant / I/ as first member followed by /p, f, $\theta, \mathrm{t}, \mathrm{d}$, $\mathrm{s}, \mathrm{z}, \mathrm{k} /$ as second members.

lp	-	plup	=	p^lp
If	-	pelf	=	pelf
I日	-	health	=	hele
It	-	knelt	=	nelt
Id	-	w3:ld	=	wild
Is	=	fə:ls	=	falls
Iz	$=$	hilz	=	hills
Ik	=	b 1 lk	=	bulk

(cf. http://www.btinternet.com/ ted.power/clustersindex.html)
The final three consonant clusters are quite numerous too, there are 40 of them. They usually end with $/ \mathrm{s}, \mathrm{z}, \mathrm{t}, \mathrm{d} /$ (which, as
already mentioned, can easliy be accounted for by morphology since they represent separate morphones).

3.1.3 Final CCC Clusters in English

Starting with oral plosive / p / as first member followed by /es, ts, st/ as second members.

$$
\begin{array}{llll}
\text { pes } & \text { depөs } & = & \text { depths } \\
\text { pts } & \text { ədppts } & =\text { adopts } \\
\text { pst } & \text { læpst } & =\text { lapsed }
\end{array}
$$

Starting with oral plosive / t / as first member followed by / $\theta \mathrm{s} /$ as second member.

$$
\text { tөs } \quad-\quad \text { eites }=\text { eighths }
$$

Starting with oral plosive / k / as first member followed by /ts, st/ as second members.

| kts $\quad æ k t s$ | $=$ | acts |
| :--- | :--- | :--- | :--- |
| kst - nekst | $=$ next | |

Starting with nasal plosive / m / as first member followed by /ps, fs/ as second members.

| mps $-\quad$ læmps | $=$ | lamps |
| :--- | :--- | :--- | :--- |
| $\mathrm{mfs}-\quad$ nimfs | $=$ | nymphs |

Starting with nasal plosive / n / as first member followed by /ts, dz/ as second members.

| nts \quad tents | $=$ | tents |
| :--- | :--- | :--- | :--- |
| ndz $-\quad$ sændz | $=$ | sands |

Starting with nasal plosive / $\mathrm{\eta} /$ as first member followed by /st/ as second member.

$$
\text { ŋst }-\quad \text { - m^ŋst }=\text { amongst }
$$

Starting with fricative / f/as first member followed by /es, ts/ as second members.

| fөs $-\quad$ fif θs | $=$ | fifths |
| :--- | :--- | :--- | :--- |
| fts $-\quad$ lifts | $=$ | lifts |

Starting with fricative / s / as first member followed by /ts/ as second member.

$$
\text { sts } \quad-\quad \text { təosts }=\text { toasts }
$$

Starting with approximant Starting with fricative / I / as first member followed by /md, m, pt, ps, bz, vd, өs, nz, dz, ks, kt/ as second members.

Imd	-	əঠVəhwelmd	$=$	overwhelmed
Im	-	elmz	$=$	elms
lpt	-	helpt	=	helped
lps	-	helps	=	helps

lbz	-	b ^lbz	=	bulbs
Ivd	-	Selvd	=	shelved
I日s	-	heles	=	heat
Inz	-	kilnz	=	kilns
ldz	-	holdz	=	holds
Iks	-	h^lks	$=$	hulks
Ikt	-	milkt	=	milked

(cf. http://www.btinternet.com/ ted.power/clustersindex.html)
The final four consonants clusters in English (7) are usually formed by three consonant clusters not containing final /s,z,t,d/for the suffixes - (e)s and -(e)d.

3.1.4 Final CCCC Clusters in English :

Starting with oral plosive / k / as first member followed by /sts, sөs/ as second members.

$$
\begin{aligned}
& \text { kses }- \text { siks } \theta \text { s }=\text { sixths } \\
& \text { ksts }- \text { teksts }=\text { texts }
\end{aligned}
$$

Starting with nasal plosive / m / as first member followed by /pts/ as second member.

$$
\text { mpts }-\quad \text { prompts }=\text { pompts }
$$

Starting with approximant / I / as first member followed by /fes, kts/ as second members.
Ifөs - twelfes $=$ twelths
Ikts - m^lkts $=$ mulcts

English shows that in the case of three-consonant clusters the phonotactic possibilities of the English phonemes are higher at the end of the syllable (word). Although the number of twoconsonant clusters is identical in the word-initial (syllable onset) and word-final (syllable coda) position, three-consonant clusters are rare in onsets and frequent in codas, and four-consonant clusters occur only in codas .

However, on the basis of the CVX theory all coda clusters can be explained by morphology as real or potential affixes or they form a complex sound (Duanmu 2009: 171-181).

3.2 The Manipuri Consonant Clusters

The consonant cluster in Manipuri are the occurrences of two consonants within a syllable. The clusters found mostly at the initial position of a syllable or a word. No final clusters are found.

Initial cluster: The initial clusters are found in the word initial or syllable initial positions. The first members of such clusters with /w/ are the phonemes $/ \mathrm{k}, \mathrm{k}^{\mathrm{h}}, \mathrm{g}$ and $\mathrm{s} /$ and the phonemes $/ \mathrm{r} /$ occurs as the second member of the phonemes $/ \mathrm{p}, \mathrm{k}, \mathrm{k}^{\mathrm{h}}, \mathrm{p}^{\mathrm{h}}, \mathrm{b}, \mathrm{s}, \mathrm{h} /$ in case of reduplication.

Occuring with /w/ as the second member:

K + w	-	kwa	$=$	betel nut
	Kwak		=	crow
$k^{\text {h }}+\mathrm{w}-$	$k^{\text {h }}$ wan	$=$		
$\mathrm{S}+\mathrm{W}$	-	swaydə	=	here
$g+w$	-	gway	=	name of

Occuring with /r/ as the second member:

$\mathrm{P}+\mathrm{r}$	prok - prok (cakpə)	intorably hot
$\mathrm{K}+\mathrm{r}$	krik - krik (təkpə)	scraching
$\mathrm{k}^{\mathrm{h}}+\mathrm{r}-$	khrək - khrək (kəŋbə)	extremely dry
	- phrəŋ (conbə) =	skipping'
$b+r$	brəŋ - brəŋ (həwbə)	flammable'
$\eta+r$	ŋrəワ - ŋrəŋ (クəŋbə)	grumbling'
$s+r$ -	sru - sru (təkpə)	$=$ scrubbing ${ }^{\prime}$

3.2.1 Syllable initial clusters in Manipuri

In the syllable initial clusters, the phonemes /p, b, c, k, b, d, j, $\mathrm{g}, \mathrm{p}^{\mathrm{h}}, \mathrm{t}^{\mathrm{h}}, \mathrm{k}^{\mathrm{h}}, \mathrm{s}, \mathrm{m}, \mathrm{\eta} /$ are followed by the flap sound $/ \mathrm{r} /$. These clusters with $/ \mathrm{r} /$ as the second member are the result of loss of the vowel $/ \partial /$. As in the example / \quad akcrew/ ' a kind of fish ' .

$$
\begin{array}{rlll}
c+r-\text { nakcrəw } & = & \text { a kind of fish } \\
t+r- & =\text { kəptreŋ } & =\text { spinning machine } \\
k+r-\text { Əəkra } & =a \text { kind of fish } \\
b+r-\text { cumbrəy } & =\text { peach }
\end{array}
$$

$d+r-$ kaŋdrum	$=$	ball
$g+r-$ məŋgra	$=$	sweet potato
$j+r-$ məyjraw	$=$	name of place
$p^{h}+r-$ pomphri	$=$	mended cloth
$t^{h}+r-$ laŋthrəy	$=$	a kind of plan
$k^{h}+r-$ cankhrən $^{h}=$	a kind of weeds	
$m+r-$ ləymram	$=$	name of place
$s+r-$ laysrəm	$=$	a surname
$\eta+r-$ jəŋrannəbə	$=$	a colour

In the syllable initials, the phoneme $/ \mathrm{p} /$ and $/ \mathrm{d} /$ also found as the first member while $/ \mathrm{w} /$ as the second member:
$\mathrm{p}+\mathrm{w}$ - məwpwa = brother
$\mathrm{d}+\mathrm{w}$ - ədwaydə = around there
Sometimes $/ \mathrm{y} /$ is found as the second member of the phoneme.
occurs with $/ \mathrm{y} /$ as the second member of syllable:
$k^{h}+\mathrm{y}$ - sənəkhya $=$ word used as an honour

$$
\text { kyamgəy }=\text { place mane }
$$

3.3 Contrastive study

Clusters found in both English and Manipuri:

All the following Manipuri initial clusters - /kw, kl, tr, dw, pr, sw, sr, pw, kr, br, dr/ are also found in English.

Initial cc clusters

$\mathrm{kw}=$ This consonant initial cluster is found in both the languages.

eg. English - kw - quack	$=$ kwæk
Manipuri - kw - kwa	$=$ betel nut

$\mathrm{kl}=$ This consonant initial cluster is found in English only because it is found only in loan words in case of Manipuri.
eg. English - kl - claim, class = kleim, kla:s
Manipuri - kl - klas = class
$\mathrm{tr}=\quad$ This consonant initial cluster is found in both the languages.
eg. English - tr - trail, trade $=$ trail, treid
Manipuri - tr - kəptren = spinning machine
$d w=$ This consonant initial cluster is found in both the languages.
eg. English - dw - dwell, dwindle = dwel, dwindle

Manipuri - dw - ədwaid a = out there $\mathrm{pr}=$ This consonant initial cluster is found in both the languages

$$
\begin{aligned}
\text { eg. English }- \text { pr }- \text { pray prey } & =\text { prei } \\
\text { Manipuri - pr - cəmpra } & =\text { lemon }
\end{aligned}
$$

$s w=$ This consonant initial cluster is found in both the languages.
eg. English - sw - sweat, sweep = swet, swi:p

$$
\text { Manipuri - sw - sway }=\text { nervousness }
$$

$\mathrm{sr}=$ This consonant initial cluster is found in both the languages

| eg. English $-s r \quad$ srinagar | $=$ srın^gə | | |
| ---: | :--- | :--- | :--- | :--- |
| Manipuri -sr | - | laysrəm | $=$ a surname |

pw $=$ This consonant initial cluster is found in both the languages
eg. English - pw - pweblə $=$ pueblo Manipuri - pw - məwpwa $=$ younger brother
$\mathrm{kr}=$ This consonant initial cluster is found in both the languages.
eg. English $-k r \quad$ cross, cry $=$ krDs, krai
Manipuri - kr - ləykrək $=$ crack
$\mathrm{br}=$ This consonant initial cluster is found in both the languages
eg. English - br - brass, bread = bra:s, bred Manipuri - br - səmbru = mole $d r=$ This consonant initial cluster is found in both the languages eg. English - dr - draft, dril $=$ dra:ft, drill Manipuri - dr - kaŋdrum = hockey ball
$\mathrm{gr}=$ This consonant initial cluster is found in both the languages.

$$
\begin{aligned}
\text { eg. English - gr - grass } & =\text { gra:s } \\
\text { Manipuri - gr - məŋgra } & =\text { sweet potato }
\end{aligned}
$$

Clusters found in English only :
Initial CCC clusters are found in English only.

eg. spl	splash, spleen	$=$ splæJ, spli:n		
spr			spring, sprain	$=$
	sprin, sprain			

Final CC clusters (syllable coda)are found in English only.
eg. p θ "depth" $=\operatorname{dep} \theta$
ts - "cuts, mates" $=\mathrm{k} \wedge$ ts, mæts
Final CCC clusters (syllable coda) are found in English only.

| eg. pst | lapsed | $=$ læpst |
| ---: | :--- | :--- | :--- | :--- |
| tӨs | | |
| | eights | $=$ eitӨs |

Final CCCC clusters (syllable coda)are found in English only.

$$
\begin{array}{rllll}
\text { eg. } \quad \text { ks日s } & \text { sixths } & =\text { siksӨs } \\
& \text { ksts } & \text { texts } & = & \text { teksts }
\end{array}
$$

Clusters found in Manipuri only:

These initial clusters are found in Manipuri only: /ky, $k^{h} w, k^{h} r, t^{h} r, g r$, cr, mr, jr/.
e.g. Manipuri - $k^{h} w-k^{h} w a \eta \quad=\quad$ waist $k^{h r}$ - pəkhra = widower cr - cocrobi $=$ a type of sand mr - ləymram = a clan jr - həyjraŋ = knife thr - kunthra $=$ thirty

Manipuri has only 2 word initial clusters (onset) while English has 2,3,4 word initial clusters, such as CC,CCC and CCCC clusters.

Manipuri does not have initial CCC clusters (syllables onset). Besides Manipuri does not have final clusters such as CC, CCC, CCCC (syllable coda) which are found in English. Because of these reason that the Manipuri speaker find it very difficult to pronounce words of these categories.

